Saturday, July 21, 2018

NUMERICAL SOLUTIONS OF ONE DIMENSIONAL WAVE EQUATIONS USING THE CRANK-NICOLSON METHOD

Abstracts
The description of Crank–Nicolson finite difference method for the numerical solution of hyperbolic partial differential equations, its numerical properties and its application to the one dimensional wave equation is presented in this project. The analysis of the method, i.e. consistency and stability was carried out and the method was found to be convergent. Numerical solutions of some wave equations were presented using MATLAB program, the results performed admirably when compared to the analytical solution.
Keywords : Finite difference; stability; boundary conditions; truncation; consistency.

Please see more information

No comments:

Post a Comment